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Abstract
The phenomena of spontaneous PT symmetry breaking, associated with
non-Hermitian Hamiltonians, are investigated. It is shown that spontaneous
breakdown of PT symmetry is accompanied by the explicit breakdown of
pseudo-supersymmetry. We also discuss in detail the resulting structure.

PACS number: 03.65.−w

1. Introduction

Non-Hermitian quantum mechanics has drawn a lot of attention for almost a decade now,
because of the intrinsic interest of such potentials [1] admitting real spectrum under certain
conditions, as well as their possible applications [2–4]. Among the various non-Hermitian
models, a particular class with PT symmetry is of special interest, since their energy
spectrum exhibits a characteristic feature—the energies are real for unbroken PT symmetry
(when the potential as well as the wavefunctions are invariant under the combined action
of space inversion (P) and time reversal (T )) while they switch to complex conjugate pairs
for spontaneously broken PT symmetry (i.e., the wavefunctions lose their PT symmetry,
although the potential still retains it) [5–7]. At the same time, various studies have shown
that PT symmetry is neither a necessary nor a sufficient condition for the existence of a real
spectrum. The criteria for the energies to be real (or in complex conjugate pairs) are the
η-pseudo-Hermiticity of these non-Hermitian Hamiltonians [8].

The phenomenon of spectral discontinuity has been the subject of study of a number
of works, both for Hermitian models [9, 10] as well as non-Hermitian ones [6, 8, 11–13],
employing a variety of techniques. In particular, it has been observed that it occurs when a set
of parameters in the potential reaches certain critical values. While the nonanalytic behaviour
of the energy spectrum was interpreted in terms of supersymmetry breaking in Hermitian
systems [10], an interplay was established between PT symmetry and supersymmetry in
a certain class of non-Hermitian models [12–14]. In the present letter, we shall show that
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the spontaneous breakdown of PT symmetry is accompanied by the explicit breakdown of
pseudo-supersymmetry, and establish the significant role played by a set of parameters a
(in the non-Hermitian potential) in this respect. We shall make a detailed study with the help
of a couple of exactly solvable examples, and also study the nature of the wavefunctions.

2. Theory

To begin with let us briefly recall some bare facts about PT symmetry. A non-Hermitian
Hamiltonian H(x; a), given by (a denoting a set of parameters)

H(x; a) = − d2

dx2
+ V (x; a) (1)

is said to be PT symmetric if

(PT )H(x; a) = H(x; a)(PT ) (2)

where the space inversion operator P and the time reversal operator T are defined by their
action on the position, momentum and identity operators, respectively, as

PxP = −x, PpP = T pT = −p, T (i.1)T = −i.1 (3)

We note that for unbroken PT symmetry, the Hamiltonian H(x; a) and the wavefunctions
ψ(x; a) are both invariant under the PT transformations [6, 7]

H ∗(−x; a) = H(x; a), ψ∗(−x; a) = ±ψ(x; a). (4)

On the other hand a non-Hermitian Hamiltonian H is said to be η-pseudo-Hermitian (thus
possessing real or complex conjugate pairs of energies), if [8]

H = H� = η−1H †η (5)

where η is a linear, Hermitian, invertible operator.
Let a non-Hermitian Hamiltonian H1(x; a)

H1(x; a) = − d2

dx2
+ V1(x; a) (6)

be defined in such a way that the potential V1(x; a) has an even real part V+(x; a) and an odd
imaginary part V−(x; a):

V1(x; a) = V+(x; a) + iV−(x; a), V±(±x) = ±V±(x). (7)

Evidently, H1(x; a) is PT symmetric,

PT H1(x; a) = H1(x; a)PT (8)

and for such a Hamiltonian, η may be represented by the parity operator P , i.e., H1(x; a) is
P-pseudo-Hermitian.

Now the Hamiltonian in (1) can always be factorized using the following ansatz [15]:

H1 = BA + E
(1)
0 (9)

where A and B are defined by

A = d

dx
+ W(x; a)

B = − d

dx
+ W(x; a)


 (10)
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W(x; a) being given in terms of the ground state eigenfunction ψ
(1)
0 (x; a) of H1:

W(x; a) = −ψ
(1)′
0 (x; a)

ψ
(1)
0 (x; a)

. (11)

This allows H1 to be identified with the well-known form

H1 = − d2

dx2
+ W 2 − W ′ + E

(1)
0 (12)

where E
(1)
0 is the ground state energy of H1.

One can then construct another Hamiltonian H2, isospectral to H1, by

H2 = AB + E
(1)
0 (13)

which, in terms of W(x; a), reduces to

H2 = − d2

dx2
+ W 2 + W ′ + E

(1)
0 . (14)

Evidently, if ψ(1)
n is an eigenfunction of H1 with energy eigenvalue E(1)

n , then ψ(2)
n = Aψ(1)

n

is an eigenfunction of H2 with the same eigenvalue E(1)
n , except for the ground state, which is

annihilated by A.

H2Aψ(1)
n = (AB)Aψ(1)

n = A(BA)ψ(1)
n = A

(
H1ψ

(1)
n

) = E(1)
n

(
Aψ(1)

n

)
. (15)

Thus,

E
(1)
n+1 = E(2)

n , ψ(2)
n = 1√

E
(1)
n+1 − E

(1)
0

Aψ
(1)
n+1. (16)

Thus A and B play the role of intertwining operators for the partner Hamiltonians H1 and H2:

AH1 = H2A, H1B = BH2 (17)

A(B) converts an eigenfunction of H1 (H2) into an eigenfunction of H2 (H1), with the same
energy. Additionally, A(B) destroys (creates) an extra node in the eigenfunction.

For conventional Hermitian quantum systems, W(x; a) is the superpotential and B = A†.
However, for non-Hermitian systems in general, B �= A†, as W(x; a) is a complex function.
In analogy with conventional quantum mechanics, and considering the η-pseudo-Hermiticity
of the Hamiltonian, W(x; a) may be termed as the pseudo-superpotential.

Let us now construct a matrix Hamiltonian H, of the form

H =
(

H2 0
0 H1

)
. (18)

If we consider the following matrix representation for η [8]

η =
(

η+ 0
0 η−

)
(19)

where η+(η−) is a Hermitian linear automorphism of H2(H1), it follows from (5), that the
intertwining operators A and B must be related through

B = A� = η−1
+ A†η− (20)

Hence, the pseudo-superpotential W(x; a) must obey the relationship

W(x; a) = η−1
+ W ∗(x; a)η− (21)

which, for the PT symmetric Hamiltonian H1(x; a) considered here (with η± = ±P),
reduces to

(PT )W(x; a)(PT )−1 = −W(x; a). (22)



L380 Letter to the Editor

Writing W(x; a) in the form

W(x; a) = WR(x; a) + iWI(x; a) (23)

the condition (22) implies

PWR(x; a)P−1 = −WR(x; a), PWI(x; a)P−1 = WI(x; a). (24)

Thus the matrix Hamiltonian H constructed above represents the pseudo-supersymmetric
Hamiltonian, formed by the pseudo-supersymmetric partners H1 and H2,

H =
(

H2 0
0 H1

)
=

(
AA� 0

0 A�A

)
. (25)

The pseudo-super-Hamiltonian H is part of a closed algebra containing both bosonic and
fermionic operators, with commutation and anticommutation relations. Such a quantum
system is generated by pseudo-supercharges Q and Q�, which change bosonic degrees of
freedom into fermionic ones and vice versa:

Q =
(

0 A

0 0

)
, Q� =

(
0 0
A� 0

)
= η−1Q†η. (26)

The following commutation and anticommutation relations then describe the closed pseudo-
superalgebra

H = {Q,Q�}, Q2 = Q�2 = 0, [Q,H] = [Q�,H] = 0. (27)

Let the dependence of the potential V1(x; a) on the set of parameters a be such that spontaneous
breakdown of PT symmetry occurs at some critical value of a, say ac, and real energies change
to complex conjugate pairs. In terms of the pseudo-superpotential, the condition (22) or (24)
holds only for unbroken PT symmetry. In such a situation, the relationship (20) breaks
down: B �= A�. Consequently, the isospectrality of the partners is lost as A and A� fail
to intertwine the non-Hermitian Hamiltonians denoted by H2 and H1. Though one can still
write H2 = AB formally, the anticommutator of the pseudo-supercharges fails to give the
pseudo-super-Hamiltonian H

{Q,Q�} �= H. (28)

In analogy with the spontaneous breakdown of supersymmetry in conventional quantum
mechanics (with vanishing zero energy ground state), this may be viewed as the explicit
breakdown of pseudo-supersymmetry in non-Hermitian PT symmetric quantum systems.
Thus the pseudo-supersymmetric algebra defined in (27) holds only for unbroken PT
symmetry, when the pseudo-superpotential defined in (11) above obeys (24), and the energies
are real. However, at the point of spontaneous breakdown of PT symmetry (a = ac), when
the energies of the system switch from real to complex conjugate pairs, both conditions (20)
and (24) are violated, and the pseudo-supersymmetry of the system is explicitly broken.

We consolidate our observations with a couple of exactly solvable examples.

3. Explicit examples

3.1. PT symmetric Scarf II potential

The non-Hermitian PT symmetric Scarf II model may be described by the Hamiltonian

H1(x; v1, a) = − d2

dx2
− v1 sech2 x − i

(
v1 + a +

1

4

)
sech x tanh x, v1 > 0 (29)

where v1 and a are real. The energy levels and the corresponding eigenfunctions are given
by [6]
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E(1)
nq (v1; a) = −

{
n +

1

2
− 1

2
(s + qt)

}2

, n = 0, 1, 2, . . . <
1

2
(|s + qt | − 1) (30)

ψ(1)
nq (x; v1, a) = Nnq

(
1 − i sinh x

2

)−λq
(

1 + i sinh x

2

)−µq

P
−2λq− 1

2 ,−2µq− 1
2

n (i sinh x) (31)

where s =
√

2v1 + a + 1
2 , t = √−a, λq = − 1

4 + q s
2 , µq = − 1

4 + q t
2 and q (= ±1) is the

quasiparity, giving rise to doublet solutions, which is a characteristic feature of this class of
PT symmetric models. Normalization requirement restricts the signs allowed in λq and µq .

It follows from (29) and (31) that the Hamiltonian H1(x; v1, a) is always invariant under
the PT transformation irrespective of the value of a, while the wavefunctions ψ(1)

nq (x; v1, a)

are PT invariant only when

−(
2v1 + 1

2

)
� a � 0. (32)

The pseudo-superpotential corresponding to the Hamiltonian in (29) above, may be given by

W(x; a) = (λq + µq) tanh x − i(λq − µq) sech x

= 1

2

(
−1 +

√
2v1 + a +

1

2
+ q

√−a

)
tanh x − i

2

(√
2v1 + a +

1

2
− q

√−a

)
sech x.

(33)

Obviously, (24) is satisfied for real λq and µq , which, in turn, is related to (32), and hence
to unbroken PT symmetry, i.e. real energies. At the same time whenever a crosses a critical
value ac, i.e., a lies beyond the region specified in (32), and energies switch to complex
conjugate pairs, two simultaneous phenomena are observed:

(i) the condition (24) is violated, thus inducing spontaneous breakdown of PT symmetry
in H1(x; v1, a);

(ii) the violation of (20) leading to the explicit breakdown of pseudo-supersymmetry.
If one keeps v1 fixed, then from (30) one can show that though

lim
a→0−

E(1)
nq (a) = E(1)

nq (a = 0) (34)

the right-hand limit, viz., lima→0+ E(1)
nq (a), does not exist. A similar situation occurs at

a = −(2v1 + 1/2).
It would be interesting to study the nature and behaviour of the partner Hamiltonian

H2(x; v1, a), from (14).
(i) For a lying in the range as given in (32),

H2(x; v1, a) = − d2

dx2
−

{
−3

4
+

s2 + t2

2
− (s + qt)

}
sech2 x − i

×
{

1

2
(s2 − t2) − (s − qt)

}
sech x tanh x. (35)

Evidently, as the condition (24) is obeyed in this case, the partner Hamiltonian H2(x; v1, a) is
alsoPT symmetric. It has real energies, isospectral to H1(x; v1, a), with the possible exception
of the ground state. Thus H1(x; v1, a) and H2(x; v1, a) form the pseudo-supersymmetric
partners of the super-Hamiltonian H, obeying the pseudo-supersymmetric algebra given
in (27).

(ii) For values of a outside the range given in (32), PT symmetry is spontaneously broken
in the Scarf II Hamiltonian H1(x; v1, a). Let a > 0, so that t = iα. It can be seen that the
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partner Hamiltonian H2(x; v1, a) is no longer PT symmetric:

H2(x; v1, a) = − d2

dx2
−

{
−3

4
+

s2 − α2 − 2s

2
− iqα

}
sech2 x − i

×
{

1

2
(s2 + α2 − 2s) + iqα

}
sech x tanh x. (36)

Thus the spontaneous breakdown of PT symmetry in the Scarf II Hamiltonian H1(x; v1, a)

is manifested as explicit PT symmetry breaking in the partner Hamiltonian H2(x; v1, a), the
two no longer being isospectral to each other. Though one can still write H2 = AB formally,
the pseudo-supersymmetry is explicitly broken. Thus the spontaneous breakdown of PT
symmetry is accompanied by the explicit breakdown of pseudo-supersymmetry.

The wavefunctions, too, behave quite strangely at these points of spectral discontinuities.
So long as PT symmetry is unbroken, the wavefunctions are normalizable in the sense of
CPT norm [11, 16]:

〈ψm|ψn〉CPT =
∫

dx ψCPT
m (x)ψn(x) = δm,n, ψCPT

m (x) =
∫

dy C(x, y)ψ∗
m(y) (37)

where C is the charge operator. The interesting point to be observed here is that, at the point
of spontaneous breakdown of PT symmetry, though the wavefunctions remain well behaved,
their CPT norm vanishes:∫

(CPT ψn(x))ψn(x) dx → 0. (38)

This can be shown by straightforward calculations [17]. Thus, unlike the Hermitian models
[9] where the effect of spectral discontinuities forces the eigenfunction to be non-square
integrable, in the present case the eigenfunctions, though exhibiting proper behaviour at ±∞,
become self-orthogonal [3].

3.2. PT symmetric oscillator

We next consider another non-Hermitian model, PT symmetrized in a different way; viz., the
well-known PT symmetric oscillator, given by the Hamiltonian

H1(x; a) = − d2

dx2
+ (x − iε)2 +

a − 1
4

(x − iε)2
(39)

where ε is a real number. The energy eigenvalues and the corresponding eigenfunctions are
given by [18]

E(1)
nq (a) = 4n + 2 − 2q

√
a n = 0, 1, 2, . . . (40)

ψnq(x; a) = Nnq e− (x−iε)2

2 (x − iε)−q
√

a+ 1
2 L(−q

√
a)

n ((x − iε)2) (41)

where the quasiparity q(= ±1) again gives doublet solutions. Proceeding in a similar manner,
the pseudo-superpotential, W(x; a), and the partner, H2(x; a), turn out to be

W(x; a) = (x − iε) − −q
√

a + 1
2

(x − iε)
(42)

H2(x; a) = − d2

dx2
+ (x − iε)2 +

a − 2q
√

a + 3
4

(x − iε)2
+ 2. (43)
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Thus, it is easy to observe that the critical value of a here is ac = 0. So long as

a � 0 (44)

the condition (24) is satisfied, PT symmetry is unbroken in the PT oscillator, and the partner
H2(x; a) Hamiltonian (in (43)) is alsoPT symmetric, both sharing same real energies, without
possibly the ground state. Consequently, pseudo-supersymmetry is unbroken. On the other
hand, for a < 0,PT symmetry is spontaneously broken in the original Hamiltonian, giving
complex conjugate energies. The conditions (20) and (24) are violated, leading to the explicit
breakdown of pseudo-supersymmetry. Furthermore, though

lim
a→0+

E(1)
nq (a) = E(1)

nq (0) (45)

the left-hand limit, viz., lima→0− E(1)
nq (a), does not exist. Additionally, though the

wavefunctions remain well behaved at ±∞, their CPT norm goes to zero. Thus in this
model too, the point of discontinuity of the spectrum is associated with the simultaneous
breakdown of PT symmetry and pseudo-supersymmetry.

4. Conclusions

In the present letter we have established the relation between the spontaneous breakdown of
PT symmetry and the explicit breakdown of pseudo-supersymmetry, at some critical value
ac of a set of parameters a in the Hamiltonian H(x; a). In particular, we have shown that in a
class of non-Hermitian, but PT symmetric Hamiltonians H1(x; a), the changing of energies
from real to complex conjugate values is a direct consequence of the simultaneous breakdown
of these two symmetries. The anticommutator of the pseudo-supercharges Q and Q� fails to
give the pseudo-super-Hamiltonian H, as the Hamiltonian H2 = AA� is no longer isospectral
to its partner H1 = A�A. In fact, PT symmetry is explicitly broken in the partner H2(x; a).
Furthermore, though the wavefunctions remain well behaved, they become self-orthogonal
beyond ac, as their CPT norm goes to zero. All the above observations hold in both the
explicit examples considered here.
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